P.R. GOVT. COLLEGE (AUTONOMOUS), KAKINADA

II year B.Sc., Degree Examinations - III Semester Mathematics Course-III: ABSTRACT ALGEBRA (w.e.f. 2020-21 Admitted Batch)

Total Hrs. of Teaching-Learning: 75 @ 6 hr/Week Total credits: 04

Objective:

- To learn about the basic structure in Algebra
- To understand the concepts and able to write the proofs to theorems
- To know about the applications of group theory in real world problems

Course Outcomes:

After successful completion of this course, the student will be able to;

- acquire the basic knowledge and structure of groups, subgroups and cyclic groups.
- get the significance of the notation of a normal subgroups.
- get the behavior of permutations and operations on them.
- study the homomorphisms and isomorphisms with applications.
- Understand the ring theory concepts with the help of knowledge in group theory and to prove thetheorems.
- Understand the applications of ring theory in various fields.

UNIT I: (12 Hours)

GROUPS: Binary Operation – Algebraic structure – semi group-monoid – Group definition and elementary properties Finite and Infinite groups – examples – order of a group, Composition tables with examples.

UNIT II: (12 Hours)

SUBGROUP:Complex Definition – Multiplication of two complexes Inverse of a complex-Subgroup definition- examples-criterion for a complex to be a subgroups. Criterion for the product of two subgroups to be a subgroup-union and Intersection of subgroups. Co-sets and Lagrange's Theorem: Cosets Definition

properties of Cosets-Index of a subgroups of a finite groups-Lagrange's Theorem.

UNIT III: (12 Hours)

NORMAL SUBGROUPS: Definition of normal subgroup – proper and improper normal subgroup – Hamilton group – criterion for a subgroup to be a normal subgroup – intersection of two normal subgroups – Sub group of index 2 is a normal sub group –quotient group – criteria for the existence of a quotient group

UNIT IV: (12 Hours)

HOMOMORPHISM: Definition of homomorphism – Image of homomorphism elementary properties of homomorphism – Isomorphism – automorphism definitions and elementary properties—kernel of a homomorphism – fundamental theorem on Homomorphism and applications.

PERMUTATIONS: Definition of permutation – permutation multiplication – Inverse of a permutation – cyclic permutations – transposition – even and odd permutations – Cayley's theorem.

UNIT V: (12 Hours)

RINGS

Definition of Ring and basic properties, Boolean Rings, divisors of zero and cancellation laws Rings, Integral Domains, Division Ring and Fields, The characteristic of a ring - The characteristic of an Integral Domain, The characteristic of a Field. Sub Rings.

Co-Curricular Activities (15 Hours)

Seminar/ Quiz/ Assignments/ Group theory and its applications / Problem Solving.

TEXT BOOK:

1. A text book of Mathematics for B.A. / B.Sc. by B.V.S.S. SARMA and others, published by S.Chand & Company, New Delhi.

REFERENCE BOOKS:

- 1. Abstract Algebra by J.B. Fraleigh, Published by Narosa publishing house.
- 2. Modern Algebra by M.L. Khanna.
- 3. Rings and Linear Algebra by Pundir & Pundir, published by Pragathi Prakashan.

Additional Inputs;

Cyclic groups definition and number of generators of a finite cyclic groups.

BLUE PRINT FOR QUESTION PAPER PATTERN

SEMESTER-III

Unit	ТОРІС	S.A.Q	E.Q	Marks allotted to the Unit
I	Groups	2	2	30
II	Subgroups	2	2	30
III	Normal subgroups	1	2	25
IV	Homomorphism, Permutations	2	2	30
V	Rings	1	2	25
Total		8	10	140

S.A.Q. = Short answer questions (5 marks)

E.Q = Essay questions (10 marks)

Short answer questions $: 4 \times 5 = 20$

Essay questions : $4 \times 10 = 40$

Total Marks = 60

P.R. Government College (Autonomous), Kakinada II year B.Sc., Degree Examinations - III Semester Mathematics Course: Abstract Algebra Paper III (Model Paper w.e.f. 2020-21)

Time: 2Hrs 30 min Max. Marks: 60

PART - I

Answer any FOUR questions. Each question carries FIVE marks.

4 X 5 M = 20 M

- **1.** Prove that the set Z of all integers form an abelian group w.r.t. the operation defined by a * b = a + b + 2, $\forall a, b \in Z$
- **2.** If G is a group, for $a, b \in G$ prove that $(ab)^{-1} = b^{-1}a^{-1}$
- **3.** If a non empty complex H of a group G is a subgroup of G then prove that $H = H^{-1}$.
- **4.** Prove that a non empty finite complex H of a group G is a subgroup of G if and only if $a, b \in H \Rightarrow ab \in H$.
- **5.** Define Normal subgroup. Prove that a subgroup H of a Group (G,.) is a normal subgroup of G if and only if $xHx^{-1} = H \forall x \in G$.
- **6.** If f is a homomorphism of a group G into a group G', then prove that the kernel of f is a normal subgroup of G.
- 7. Write down the following permutation as product of disjoint cycles

$$f = (1 \ 3 \ 2 \ 5)(1 \ 4 \ 3)(2 \ 5 \ 1).$$

8. Show that a ring R has no zero divisors if and only if the cancellation laws hold in R.

PART - II

Answer ALL questions. Each question carries Eight marks. $40\ M$

5 X 8 M =

40 IVI

9 (a) Prove that the set Z of all integers form an abelian group w.r.t. the operation is defined by $a * b = a + b + 2 \forall a, b \in Z$.

(OR)

- (b) Show that the set Q_+ of all positive rational numbers forms an abelian group under the composition defined by 'o' such that $a \circ b = (ab)/3$ for $a, b \in Q_+$.
- **10** (a)Prove that a non empty complex H of a group G is a subgroup of G if and only if $a, b \in H \Rightarrow ab^{-1} \in H$.

(OR)

- (b) State and prove Lagrange's Theorem. Prove that the converse of Lagrange's theorem is not true
- **11** (a) If H is a normal subgroup of a group (G,.) then prove that the product of two right (or) left cosets of H is also a right (or) left coset of H in G.

- (b) If H is a subgroup of G and N is a normal subgroup of G, then prove that
 - (i) $H \cap N$ is a normal subgroup of H (ii) N is a normal subgroup of HN
- 12.(a) Prove that the necessary and sufficient condition for a homomorphism f of a group G onto a group G' with kernel K to be an isomorphism of G into G' is that $K = \{e\}$

(OR)

- **(b)** $f = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8), \ g = (4 \ 1 \ 5 \ 6 \ 7 \ 3 \ 2 \ 8)$ are cyclic permutations. Show that $(fg)^{-1} = g^{-1}f^{-1}$.
- 13.(a) A finite integral domain is a field.

(OR)

(b) Prove that the ring of integers *Z* is a principal ideal ring.